Posts Tagged ‘Open Access’

A Proposal To Improve Peer Review: A Unified Peer-to-Peer Review Platform (part 2)

October 15, 2010 1 comment

This is part 2 of my blog series where I present our proposal/working paper to improve scholarly communication through the peer review element. You can find part 1 here.

Towards Scholarly Communication 2.0: Peer-to-Peer Review & Ranking in Open Access Preprint Repositories is the title of our working paper and can be downloaded for free over at SSRN.

A quick recap: In part 1 I’ve presented the opportunities of a unified peer review platform to improve the certification function of scholarly communication. The bottleneck, however, is that journal publishers have no incentives to allow their journal editors to participate to initiate peer reviews and share their peer reviews afterward. Journal editors have neither the time nor the motives to contribute systematically, continuously and publicly. Our proposal then shifted from a “unified peer review platform” to a “unified peer-to-peer review platform”. In other words, we’ve focused on designing a peer review model that can work independently of journal publishers (and their editors). This lead to our choice of Open Access preprint repositories as the technical foundation for our model: access to manuscripts eligible for peer reviews and a platform for scholars to share their works. In this part of the blog series we’ll start exploring the consequences of that shift with…

A General Overview of the Model: Simulating the Journal Editor
Since the journal editor plays a pivotal role in the (journal) peer review process, the peer-to-peer review process needs to compensate for the lack of journal editors to be feasible. In the working paper, we identify seven activities that journal editors carry out with regards to certifying manuscripts. By providing alternatives to execute these activities in a peer-to-peer environment, we’re essentially laying down the functional foundation of our peer-to-peer review model. After that, we can focus on the actual peer-to-peer review process, but that’s for another blog post. Since I’ll present a brief overview of the model here, I’ll also occasionally quote directly from our working paper, since these points are already succinctly phrased there.

The first activity is to screen the manuscripts submitted by authors to determine whether they are worth sending out to their peers for reviews. Manuscripts that they feel are likely not going to be suitable enough to be published in their respective journals are rejected. For our environment, we can provide scholars with the instruments to submit comments and ratings for either the abstract or the entire manuscript. As a screening process, it can be far less thorough but still valuable. By allowing peers to “trust” each others’ ratings, everyday scholars can change into “personal editors” with little additional effort, further improving the screening of interesting/significant papers.
Page 5:

The second activity is to select suitable peer reviewers for the (screened) manuscripts.

There are two elements in this activity. The first element are the qualified scholars for the peer reviews. The second element is the ability to properly match those qualified scholars with the manuscripts that are eligible for peer review. We propose to tackle the first point as follows (page 5):

For the peer-to-peer review environment, qualified scholars can be located in various ways. One way is to integrate the registration database with the author databases of the repositories themselves. Another approach is to grant special authorization to scholarly institutions to manually register their scholars.

The second point, matching qualified scholars with the right manuscripts for peer review, is a lot more difficult. In fact, it’s probably the most difficult thing to achieve with the same effectivity and efficiency. The feasibility of the entire model will largely depend on how well we can achieve this particular process. In the paper we’ll go in greater detail how we think this can be achieved, but for now this will set the direction of the solution that we’re proposing (page 5):

There are several potential approaches to match manuscripts with suitable scholars for peer review. One obvious approach is to let registered scholars choose which manuscripts they wish to peer review. That approach will avoid any issues concerning incompatible expertise between the manuscripts and the peer reviewers. Ensuring a satisfactory level of objectivity will be complicated when scholars can pick whom and what they get to evaluate, however. A more reliable approach is necessary. One such approach is to automate this process by utilizing specialized recommender systems [Adomavicius and Tuzhilin 2005]. Specifically, an automated manuscript/peer reviewer selection system [Basu et al. 2001; Dumais and Nielsen 1992; Dutta 1992; Rodriguez and Bollen 2006; Rodriguez, Bollen and Van de Sompel 2006; Yarowsky and Florian 1999] that matches the peer reviewers’ preferences and expertise with the manuscripts.

“Second” Obligatory Reminder: this is not the complete solution that we propose for selecting suitable peer reviewers for manuscripts with no conflicts of interests in our peer-to-peer environment. We do not think that this process can currently (or even in the nearby future) be fully automated. It is, however, an important element and it will go a long way toward making this entire process less labor intensive. We will cover this important topic more thoroughly later.

The third activity is to act as an intermediate between authors and peer reviewers. Editors serve as an indirect communication channel. An important benefit of these selection and intermediation functions is that peer reviewers can remain anonymous. Anonymity allows them to be more honest about their assessment, as they don’t fear any kind of “retaliation” by the authors for criticizing their manuscripts. Of course, anonymity also means that it’s easier for peer reviewers to criticize a manuscript harshly, justified or not.
Page 6:

The ability to provide scholars with all the instruments they require to peer review anonymously while still being properly credited for it is not a complicated functionality in the digital world. To be completely anonymous to all human parties, but still receive proper credit for every contribution is a unique and significant benefit of a digital scholarly communication system.

To achieve that benefit, the model provides scholars with the option to register with their real identities. They can then opt to carry out activities anonymously under generic “nicknames”. Those activities are then scrutinized and quantified. Their contributions quantified are their Reviewer Impacts. After every valuable contribution, a scholar’s Reviewer Impact is appropriately adjusted and then attached to their real identity. Through this approach, every scholar is responsible for what they do, but it will be their Reviewer Impact that essentially represents the quality of their actions.

The fourth activity is to verify the quality of the manuscripts, where the journal editor essentially acts as a peer reviewer. For this matter, specific accommodations for proper peer reviewing are accounted for in this model. These accommodations can be forms that include the relevant manuscript and peer review criteria to support the peer reviewers in peer reviewing and evaluating each others’ peer reviews properly.
Page 6:

The fifth activity is to verify the quality of the peer reviews; acting as a peer reviewer of the peer reviewers. With or without editors, but especially without, the model provides instruments for peer reviewers to assess the quality of the peer review reports of their peers. As mentioned in the previous activity, these instruments will be forms with the relevant characteristics of proper peer reviews for scholars to provide their feedback with.

Page 6:

The sixth activity is to decide whether to approve the peer reviewed manuscripts for publication, approve after revision or an outright rejection. The peer-to-peer review model is focused on quality control for the sake of “grading” a manuscript and properly crediting peer reviewers for their work. Whether the manuscripts will then be picked up for publication, grant funding, academic ranking or simply remain in the respective repository as a peer reviewed research article is not a focus point. For feasibility purposes, the important thing is to accommodate these different options. Examples of these accommodations are publicly accessible rankings of papers based on their citation counts and based on the grades by peer reviewers.

Page 7:

The seventh activity is to determine the visibility of publications, including the layout of the magazine and the time of publication. A key objective of this model is to offer scholars practical rewards to encourage regular, valuable contributions. With the output and proficiency of the peer reviewers quantified in Reviewer Impact, there are ways to rank them systematically, based on their peer review performance. For a more direct approach, there is a peer reviewer ranking with the names and their Reviewer Impact publicly visible. Indirectly, the system can rank their preprints and improve their visibility by positioning them higher on returned search queries.

Since I feel bad about quoting so much verbatim from our paper for this blog post, here is an original image to somewhat reflect what is stated here (and in the paper) for additional clarity.

Summary Part 2
Our peer-to-peer review model allows scholars to peer review anonymously and credits them for their work. Established quality assessments instruments are included to improve the effectivity and efficiency of these assessments. In the next part (of the paper), we present the workings of the actual peer-to-peer review process in greater detail. We also focus on measures to achieve accountability, efficiency and effectivity with this peer-to-peer review process.


  • Adomavicius, G., Tuzhilin, A. 2005, ‘Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions’, IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734-749.
  • Basu, C., Hirsh, H., Cohen, W.W., Nevill-Manning, C. 2001, ‘Technical Paper Recommendation: A Study in Combining Multiple Information Sources’, Journal of Artificial Intelligence Research, vol. 14, pp. 231-252.
  • Dumais, S.T., Nielsen, J. 1992, ‘Automating the Assignment of Submitted Manuscripts to Reviewers’, in Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Copenhagen, Denmark, pp. 233-244.
  • Dutta, A. 1992, ‘A deductive database for automatic referee selection’, Information & Management, vol. 22, no. 6, pp. 371-381.
  • Rodriguez, M.A., Bollen, J. 2006, ‘An Algorithm to Determine Peer-Reviewers’, Working Paper. Retrieved June 25, 2008, from
  • Rodriguez, M.A., Bollen, J., Van de Sompel, H. 2006, ‘The convergence of digital libraries and the peer-review process’, Journal of Information Science, vol. 32, no. 2, pp. 149-159.
  • Yarowsky, D., Florian, R. 1999, ‘Taking the load off the conference chairs: towards a digital paper-routing assistant’, in Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in NLP and Very-Large Corpora, University of Maryland, Maryland.

Defending the Unified Peer-to-Peer Review Platform Proposal Part 3

October 8, 2010 1 comment

This is part 3 of my defense against David Crotty’s (additional) critique. The topic of our exchange is our working paper. Part 1 of our exchange is here (a different style of blog title there, though. I apologize for the confusion). Part 2 is here.

If you want to skip this and just read about our proposed model from the beginning, you can either go to the first part of my blog series that summarizes our proposed model (and wait for updates) or read our paper in its entirety right here.

Citation: you can imagine other factors being added in, but from my recall, citation was the factor that was mentioned over and over again as being used to score a reviewer’s performance.

Not quite. The paper citation count is actually “just” another element of the Reviewer Impact. The grades for the peer reviews by the other peer reviewers are far more important. We didn’t design nor intended for the paper citation count to be relatively more influential for the Reviewer Impact of scholars.

I agree that citation is an incredibly important metric, but it’s a flawed one as well. It’s impossible to separate out a citation in a subsequent paper that lauds an earlier discovery versus one that proves it to be untrue. Fraudulent and incorrect papers get cited lots.

No disagreements here. As mentioned in part 2 (and in the paper, of course): the paper citation count does have a substantial role in determining the rankings of the eprints by default. But that’s not really any different from how it is utilized now. I wonder how feasible attaching a +/- value to citations will be for the model?

Citation is a very slow metric as well, as you note in your proposal. If Reviewer Impact is indeed important to a career, it may not fit into the necessary timeline for someone up for tenure or funding.

Reviewer Impact can help one’s career a bit, indirectly, by improving the visibility of one’s papers. The actual effect of citations is rather modest in this context. A high Reviewer Impact will do very little, if anything at all, for authors who have papers that aren’t interesting to scholars to begin with. A high Reviewer Impact will likely do something for authors with papers that are interesting to scholars to begin with.

And citation is certainly an area where one could game the system, by deliberately citing all of the papers one reviewed. If the Reviewer Impact score is somehow decided to be important, you could choose papers relevant to your own work, give them a good review then cite them, thus pumping up your own score for judging science.

The Reviewer Impact is not designed nor was it ever intended to be significantly influenced by the paper citation count. Which is why I consider your scenario to be rather farfetched. However, you are correct that it is still a factor and it is still exploitable so I should take it seriously. So thank you for bringing up this point. I’ve spent a good part of an afternoon thinking of ways to tackle this issue.

Here’s one pretty surefire way to tackle the issue: if the Reviewer Impact becomes so important to scholars that they are willing to “unjustly” increase the citation count of the papers that they have reviewed and scored favorably (on “significance/impact”) just to gain that little bit of advantage (from one element of their peer reviews), I think it’s safe to assume that by then the peer-to-peer review model is very established. Likely established enough that we no longer need the “personal” incentives to encourage scholars to participate. Thus we remove the incentives in favor of improving the effectivity and efficiency of all our scholarly communication functions, while at the same time eliminating many of the personal motives for scholars to exploit the system. I’d really rather not do this unless there’s absolutely no other way of preventing people from exploiting the paper citation count and possibly other exploits, though.

A more technologically challenging approach is to develop a function that can automatically track which authors have cited which papers. And then track whether they have peer reviewed those papers (positively), but without providing the names of the actual papers to ensure the identities of the peer reviewers are not exposed. To allow a higher degree of accountability, this information can then be publicly displayed, e.g.: “This author has a total of x citations divided over x papers that he/she has also peer reviewed (and rated positively)”. After deciding what are unreasonable levels of such incidents taking place, we can either nullify the impact this measure has on their Reviewer Impact. Of course, they could avoid this measure by having “friends” cite those papers for them so they’re not directly connected.

The easiest solution is to simply remove the paper citation count as an element that can influence a scholar’s Reviewer Impact. They must still assess the significance of a paper, but only to the benefit of the other scholars, not themselves. If we were to use this solution, we must think of another way to reflect a peer reviewer’s ability to accurately assess the significance of a paper in their Reviewer Impact. After all, it is a valuable skill and reflects the understanding the scholars have of their disciplines. Perhaps we should have the model and these specific elements depend (more) on the expert reviews of registered scholars. For example, based on just the abstract, introduction, discussion and conclusion of a paper, provide scholars with the means to rate, comment and provide additional evidence for the significance of the reviewed paper. They have to be qualified to determine this for the research topic of the paper. Since the focus for them should only be on the papers they find significant and can say something positive about, their real identity will also be attached to it.

Another example of a place for gaming is in reviewing the other reviewer on your paper. As I understand it, there are a certain number of “reviewer credits” given for each peer review session. If those are divided among the paper’s reviewers based on their performance, isn’t there an advantage in always ranking the other reviewer poorly so you garner more of the credits?

Authors and peer reviewers must unanimously consent to “finalize” a peer review session. They will have access to the peer reviews of the other peer reviewers before they receive the option to end that particular peer review session. If this doesn’t lead to a satisfying result the assessments can be made publicly visible. This will consequently provide a larger group of peers the opportunity to share their thoughts and finalize it for them. The peer reviewers will receive the opportunity to adjust their assessments before that can happen. Either way, no Reviewer Credits will be credited until peer review sessions are finalized.

Delays: one month is a lot longer than my current employer gives reviewers (2 weeks).

The 1 month is just an example and can be changed. I think this will also vary per discipline.

Furthermore, as you note, the time limit can be changed by the reviewers.

Oops, that’s supposed to be a consensus of authors and peer reviewers. We got it right with the “new deadlines”, but not with the default time limits. Good catch! And while we’re at it, it’s probably a good idea to set the maximum extension limit to 2 weeks every time. This way authors (and peer reviewers) receive two weeks every time to consider if the peer review sessions are going somewhere or if they should just cancel them.

If a paper gets a bad reviewer who unfairly trashes it, should that paper be permanently tarnished by having that review read by every subsequent reviewer? Wouldn’t it be better if they gave the paper a fair chance, a blank slate? Clearly I’m not alone in thinking this, as the uptake levels for systems like the Neuroscience Peer Review Consortium are microscopic (1-2% of authors).

Better for the authors, yes. And what if the reviews are fair and the authors unfair in #1. their treatment of the reviews and #2. their assessment of their manuscripts? On what basis do the authors/papers deserve another “fair” chance then? Aren’t you the one overly relying on authors to be completely truthful and objective about their own manuscripts now?

This seems to be an interesting contradiction: if editors are really as valuable as we think they are when it comes to selecting the best peer reviewers, then shouldn’t we also expect that, in general, peer reviewers will objectively, proficiently and constructively review manuscripts? What is the problem then with sharing the reviews with other valuable journal editors who will choose the best peer reviewers? Other than the competitive reasons? If the “consensus” is that these peer reviews shouldn’t be shared with other journal editors and their selected peer reviewers, doesn’t that imply that something is wrong with the ability of journal editors and their selected peer reviewers to carry out their tasks in an objective, constructive and proficient manner? And that we should encourage a higher degree of accountability, both for the authors and for the peer reviewers?

One good reason I can think of why peer reviews shouldn’t be shared, with respect to improving scholarly communication in general, is because the authors have revised the manuscripts and the peer reviews have become irrelevant. Which means that sharing them would be a waste of time for the new peer reviewers. This can somewhat be addressed with a “Track Changes” function that can neatly display the changes of the manuscripts in relation to the specific points of feedback by the corresponding peer reviewers.

Additional work: there’s a huge difference between reading through the other reviewer comments on a paper and in writing up and doing a formal review of the quality of their work. If one is to take such a task seriously, then it’s a timesink.

I think it’ll depend on the design and use of the quality assessment instruments. It doesn’t necessarily have to be a big write up of the other peer review report. It could be based on providing ratings for each of the important characteristics of a good peer review and a “highlight” tool to support each rating. Each highlighted part of the other peer review represents something the other peer review lacks or has extra compared to their own peer review report. The entire process does not have to be complicated or time consuming to still be constructive.

There seems to be a whole raft of negotiations involved and extra duties, extra rounds of review. The proposal itself is highly complicated, filled with all sorts of if/than sorts of contingencies. You’ve certainly put a lot of thought into it, but it’s way too complicated, too hard to explain to the participants.

I expect that the model will be easier to explain once it’s out of the design/brainstorming phase. The current phase is about presenting as many solutions as possible to address every single significant issue that we can think of. If the model wasn’t so “complex”, I’d likely have a lot harder time replying to your criticism, for example. If we can actually build the tools, it’ll be easier for them to just use the tools, rather than read about them.

The ideal improvement to the system would be a streamlining, not an adding in more tasks, more negotiation, more hoops through which one must jump. Time is the most valuable commodity that most scientists are having to ration. Saving time and effort should be a major focus of any improved system.

First of all, the proposed model is designed to reduce the time and effort of scientists, among other things. Secondly, a lot of critics disregard new models for a lack of personal incentives. Pretty much like what you’ve been doing, and I’d like to think this is one of the few ideas that has actually focused on providing said personal incentives to participants. And it’s a bit difficult to provide personal incentives, whatever they are, without a way to assess the exact contribution of participants so one can reward them more appropriately. And one thing led to another and this proposed model is the result of just wanting to make scholarly communication better and still provide personal incentives.

I do think you have some interesting ideas here, and I look forward to seeing future iterations.

Thanks. Some of your feedback has helped me come up with some new ideas to improve the model a bit.

Defending the Unified Peer-to-Peer Review Platform Proposal Part 2

October 6, 2010 2 comments

I really hate writing long comments in (most) comment sections, because the readability is usually terrible. So I’m going to spend another blog post to reply to David Crotty’s additional critique. The topic of our exchange is our working paper. Part 1 of our exchange is here (a different style of blog title there, though. I apologize for the confusion). This is part 2 and there will be a part 3, because there are too many things in the critique that require more detailed responses to fit in one blog post, unfortunately.

On a related note: I can’t shake the feeling that I’m totally destroying the proper flow of presenting our model with these exchanges, though. We’re jumping all over the place with this. If you want to skip this and just read from the beginning, you can either go to the first part of my blog series that summarizes our proposed model (and wait for updates) or read our paper in its entirety right here.

The point there was to talk about the futility of social reputation scoring systems as motivators for participation in a professional market. That’s where the question “who cares” is an important one.

Yes, I know what your point is. And I’m saying that just because there haven’t been many success stories, if any, it doesn’t mean it’s impossible. It just means that it is, at best, very difficult and the odds are very high that our model isn’t feasible. Consider me fully aware of this reality. On that note, I thank you for investing time and effort into reading our working paper and providing feedback for it. I truly appreciate that (well, not necessarily for your first entry, but certainly for this one).

No one questions the desire to improve the peer review process, improve science publishing, improve communication and speed progress. If your system accomplishes those sorts of things, then isn’t that motivation enough?

It sure is, but what if we don’t see a way of doing that unless we can somehow measure the contribution of scholars in the role of peer reviewer and provide them with “personal” incentives proportionally? To you, a scoring system may just be a useless shiny number generator, but for us it’s an integral part of getting this model to function properly and realize the benefits that come with it. Actually, if we can motivate enough scholars to peer review with our approach (or similar methods) and verify that such approaches truly improve scholarly communication in general, I’m not ruling out the idea of removing these “personal” incentives. But to me, they are more than just personal incentives; I genuinely believe these incentives can additional provide important value to scholars, such as an indirect “rating” of manuscripts (more on this later).

Adding a scoring system does not seem to be a big motivator, particularly, as noted in the blog, because it’s irrelevant outside of your system.

Our “system” is actually the entire environment of Open Access preprint repositories including additional databases/archives with (peer-to-)peer reviews of those preprints. It’s relevant to all the scholars who are interested in platforms with scrutinized research literature. That’s not a small area of relevancy.

If I’m up for tenure and I haven’t published any papers or secured any grants, will having a good Reviewer Impact score make any difference to my institution? If I’m a grant officer for the American Heart Association, I’m looking to fund researchers who can come up with results that will help cure disease, not researchers who are good at interpreting the work of other researchers or who are popular in the community. Why would I care about a grant applicant’s Reviewer Impact score?

I noticed I’ve missed this part in your original blog post as well. I’m going to skip commenting on this right now because I don’t think you fully understand our intentions with Reviewer Impact as an incentive for scholars to peer review. Instead, I’ll talk a little bit more about that in reply to your following statements:

For any system to be adopted, it has to have clear utility and superiority on its own. An artificial ranking system does not add any motivation for participation. The one benefit offered by your Reviewer Impact score is more visibility for one’s own papers.

Actually, that’s not the only benefit. The Reviewer Impact’s most significant role is to help with enforcing accountability, actually. And we’re hoping that a more accountable system leads to peer reviews of a higher quality, which leads to more incentives for scholars. Anyway…

That seems to be the opposite of what you’d want out of any paper filtering system. You want to highlight the best papers, the most meaningful results, not the papers from the best reviewers. If a scientist does spectacular work but is a bad reviewer, that work will be buried by your system in favor of mediocre work by a good reviewer.

A legitimate concern. In fact, it’s so legitimate that we’ve thought of it as well. Page 18:

When scholars are searching and browsing for manuscripts, the order of the peer review offers of the manuscripts are prioritized based on relevance. However, if the degree of suitability and relevance of the manuscripts is largely the same, the manuscripts of the scholars with a higher Reviewer Impact will be listed higher on search results, browse results and their lists of peer review offers.

So while I think I did say papers in the last reply to you, I meant “manuscripts” or “preprints”. I agree absolutely that the good papers should be at the top of the heap, but the rankings of preprints are (more) fair game. Once someone can establish the quality of the preprints, this personal incentive is going to be far less effective.

Page 18 again:

The paper citation count alone is widely considered as one of the best, if not the best, quality indicator of a paper that scholars have. It is therefore more reasonable to attach far less weight to the Reviewer Impact in determining the priority, if at all, and more weight to the other quality indicators when it comes to postprints.

And page 19:

In order to avoid such conflicts, we could apply the following conditions: the priority level for preprints in search and browse results are for 50% determined by the Reviewer Impact of the authors. 30% is based on more established quality indicators such as paper citation counts. The remaining 20% is based on the “informal” manuscript screenings and other quality indicators. For postprints, 60% is based on quality indicators such as paper citation counts and the peer review grades. 20% is based on their Reviewer Impact, and the remaining 20% is based on the informal manuscript screenings and other quality indicators. These conditions can be revaluated once they have been put in effect and more insight is available on their effectiveness. For example, if there is evidence that the Reviewer Impact of scholars is more accurate in reflecting the quality of the manuscripts of the respective authors than previously assumed.


That said, I’m happy to expand my comments on your proposal. As a working paper, it deserves scrutiny and hopefully constructive criticism to improve the proposal.


I call the automated selection program “magical” because it does not exist, and I don’t think it’s technologically capable of existing, at least if it’s expected to perform as well as the current editor-driven system.

A legitimate concern. As I mentioned before, the effectiveness of our manuscript selection function and the efficiency (with regards to time and effort) of peer reviewing the peer reviews are the biggest hurdles for our proposal. But even if our manuscript selection function cannot be optimized to eliminate the same number of conflicts of interests as journal editors do now, that doesn’t actually mean that the total amount of peer reviews through our method will be relatively of lesser quality compared to the total amount of peer reviews through the traditional journal peer review. In exchange for a lack of journal editors, the system does provide a far higher level of (public) accountability. Even journal editors cannot track the degree of professionalism scholars exert (for peer reviewing). That is possible in a unified (peer-to-)peer review system.

Your conflict of interest prevention system relies entirely on reviewers being completely fair and honest.

No, this is actually not accurate. One suggestion we have to improve this conflict of interest prevention system is to have scholars publicly “declare” that there is no conflict of interests. Some excerpts from page 15:

Furthermore, scholars should be given the opportunity and encouragement to mark both manuscripts and papers for which they are “Proficient” to peer review. If this statement is checked, additional statements are presented, such as the “No conflict of interest” statement and whether the scholars are “Interested”, “Very Interested” or “Not Interested” in peer reviewing the respective manuscripts and papers.

After a manuscript has a certain amount of such “compatibility” statements checked by a number of scholars, a short overview with the titles and abstracts of the respective manuscripts can be added to the real profile pages of these scholars. This allows for a way to validate the accuracy of their claims of proficiency and objectiveness.

So we see this as a method to connect manuscripts with scholars without giving away the identities of the peer reviewers. Which means that…

One of the common complaints about the current system is that reviewers with conflicts deliberately delay, or spike a qualified publication. If those reviewers are so unethical that they’re willing to accept a review request from an editor, despite knowing their conflicts, why do you think they’d recuse themselves in your system?

…our proposed system allows practically anybody to verify (and call to attention) potential conflicts of interests. This allows for a higher degree of accountability and provides the means to stop “repeat offenders”. With the traditional publishing system, this is extremely difficult to achieve, if not impossible. Of course, efficiency is a legitimate concern even if we can enforce standards to minimize the “additional” workload. Again, we certainly don’t deny this is going to take some serious effort to get it as good as with real journal editors, if at all possible.

Isn’t landing a big grant or being the first to publish a big result going to be more important to them then scoring higher on an artificial metric?

Absolutely. But I think what you’re forgetting is that we’re dealing with OA preprints here. Which is both a strength and a weakness. The “strength” is that the part about “stalling a publication” is actually less meaningful in “our” OA preprint environment than in the current scholarly publishing environment. Granted, “ruining” a review/manuscript and delaying a proper “grading” of the preprint is still going to be detrimental to the authors of those preprints. And a bigger “weakness” is that by limiting ourselves to just being able to scrutinize OA preprints, we can never truly compensate for an important service that journal publishers provide: preventing manuscripts from being publicly accessible until it’s been accepted (after revisions, optionally) for publication i.e. “closed” peer review, if you will.

Again, with the ability to confirm and track such offenses globally, we can discourage such incidents from happening (again) better than the current system can, in theory. And I don’t think we should just disregard the potential of the other measures that we have in mind (and written about) to improve this system. But I definitely can see how optimizing this function is going to take the most time. I’m actually secretly hoping that experts of recommendation systems and encryption can give us a piece of their minds on how to best optimize this process through automation and/or allowing people to manually verify which papers scholars have tagged “no conflict of interests” without revealing their identities.

But there’s much more to selecting good reviewers than just avoiding conflicts of interest. Your system relies on reviewers accurately portraying their own level of expertise and accurately selecting only papers that they are qualified to review. One of the other big complaints about the current system is when reviewers don’t have the correct understanding of a field or a technique to do a fair review. A skilled editor finds the right reviewers for a paper, not just random people who are in the same field.

On average, journal editors know enough about the manuscripts and the scholars to estimate whether scholars are capable of properly reviewing it better than the scholars themselves? I find that quite difficult to believe. And scholars certainly don’t have the incentive to risk that in our system. Because all their peer reviews get evaluated systematically. And depending on how they’ve done their job (with very high or very low scores for peer reviews), their reviews could be partly made public.

When an editor fails to do their job properly, you get unqualified reviewers. In your system, this would be massively multiplied as there’s a seemingly random selection of who would be invited to review once you get into a particular field.

This depends on how effective the manuscript selection function will work. And I don’t expect the incompetency of scholars to determine whether they can properly review manuscripts to be that big of an issue, to be totally honest. The stories that I’ve heard are usually the other way around: scholars complaining about journal editors repeatedly sending them manuscripts that are way outside of their expertise, simply because the journal editors don’t have anybody else or part of their stressful routine to get as many peer reviews as quickly as they can. The scholars who cave and do the peer reviews do so because #1. it’s not their responsibility if the peer reviews are of low quality since it’s the journal editors who asked them to do that and, more importantly: #2. they feel they can still contribute to improving the manuscripts, even if it’s not their (main) expertise. And they realize their (weaker) contribution could very well be the only thing these manuscripts will have (before they either get rejected or accepted for publication). And something is better than nothing.

With our system, we’re basically saying: “We’re giving you the option to choose now, ladies and gentlemen. So make sure you get it right, because there’s nobody but yourself to blame if you do a poor job of it. And that doesn’t help you and it doesn’t help the authors that you’re trying to help”. Optionally, we could provide them with the opportunity to simply “screen” (“light” peer review) instead of a “real” review if they feel they have something to contribute to the manuscript, but not fully confident that they can do a good job of it.


Your system seems to have a mechanism built in where a reviewer can only reject a limited amount of peer review offers. After that, he must peer review manuscripts to remain part of the system. That puts pressure on reviewers to accept papers where they may not be qualified.

A fair point. To reduce the impact of this issue, scholars can earn the right to refuse to do peer reviews with activities that require far less time and effort. From “screening” papers to validating the no conflict statements of authors and other useful but less time consuming activities. Page 17:

The third measure is a limit system: a mechanism that enforces a limited amount of times a scholar can perform an activity. An example of such an activity is rejecting a batch of peer review offers. While rejecting manuscripts they do not wish to peer review is acceptable, they cannot reject unlimitedly. They have to peer review or screen manuscripts to regain the option again to reject again.

Still, I imagine the solutions should probably be better. It definitely is food for thought.

Expertise is not democratically distributed. You want papers reviewed by the most qualified reviewers possible, not just someone who saw the title and abstract and thought it might be interesting or because they ran out of rejection opportunities allowed by the system.

All fair points, but as I’ve already commented on them earlier in this reply, I’m going to skip this. In fact, I think this is a good place to end part 2 of my defense. Part 3 coming soon…

A Proposal To Improve Peer Review: A Unified Peer-to-Peer Review Platform (part 1.5)

October 5, 2010 5 comments

Late again. So as I was working on part 2 of this blog series where I present our proposal to improve scholarly communication through the peer review element….I came across this rather scathing review of our proposal by David Crotty.

Since I don’t see the point of working on part 2 while someone has criticized some elements of our proposal, I’m going to take a short break and respond to the criticism first.

First things first, my co-author of our working paper no longer works at Erasmus University Rotterdam. He hasn’t updated his information yet. As for me, I currently don’t have any affiliations (relevant to this working paper anyway). So that’s that. I wouldn’t exactly classify myself as mysterious, as I do have a LinkedIn page where I’ve listed my educational background. But let’s focus on the actual comments.

Their system is designed to begin in open access preprint repositories and then potentially spread into use in traditional journals.

The design should, by default, allow journal publishers/editors to take advantage of the system. But that’s pretty much it. This part doesn’t change at all whether the peer-to-peer review model grows or not.

The proposal is full of gaping holes, including a need for a magical automated mechanism that will somehow select qualified reviewers for papers while eliminating conflicts of interest,

Okay. First of all, I don’t consider the idea of a recommendation system that can match manuscripts with suitable peer reviewers as magical. Now, in the Discussion & Conclusion section of our paper we go over the potential strengths and weaknesses of our peer-to-peer review model. In the “Potential Weaknesses” section of it, we’ve stated the following:

A key requirement of the peer-to-peer review model is that the automated manuscript assignment system has to be effective. Since it is essentially a type of recommendation algorithm, it should be technically and functionally feasible to find suitable manuscripts for scholars available for peer review. We identify two issues that remain for now. The first is how to verify whether there is a conflict of interest without making the real identities public. The ability to verify this would improve the answerability of this model significantly. Technically and functionally, filtering certain matches should be feasible, but it would significantly rely on the information that scholars provide. Perhaps allowing authors to indicate manually which authors (edit: scholars is probably a better term to use here) they do not want for peer review might help address this issue. The manual element can be done anonymously, making it only accessible to the automated manuscript selection algorithms. Ideally, we would be able to rely on the automated selection algorithms for this issue as much as possible. Creating a system that can compare paper abstracts, keywords, scholarly affiliations and future research projects to determine whether there is reason to believe there is a conflict of interest is a critical success factor.

To imply that we completely (and magically!) depend on the manuscript selection element, including the ability to find and reject matches with a conflict of interests, to be fully automated and working perfectly is highly inaccurate. In fact, on page 15, in the “On Peer-to-Peer Answerability” section of our paper, we’ve spent 5 paragraphs on addressing this exact issue, with the second paragraph starting with the following:

Manual approaches should additionally be implemented in the event the recommendation algorithms are unable to detect conflicts of interests. For example, scholars can manually prevent certain scholars from peer reviewing their manuscripts. The number of scholars they can prevent from peer reviewing can be based on the total number of suitable scholars. Furthermore, scholars should be given the opportunity and encouragement to mark both manuscripts and papers for which they are “Proficient” to peer review. If this statement is checked, additional statements are presented, such as the “No conflict of interest” statement and whether the scholars are “Interested”, “Very Interested” or “Not Interested” in peer reviewing the respective manuscripts and papers.

(SNIP: To the next paragraph)

After a manuscript has a certain amount of such “compatibility” statements checked by a number of scholars, a short overview with the titles and abstracts of the respective manuscripts can be added to the real profile pages of these scholars.

The rest you can read for yourself. I won’t do it justice unless I quote the entire thing, and I still got other things to handle in this post. One can certainly question how efficient this model can relatively be with these manual measures (an issue that we’ve also acknowledged and discussed), but to suggest a magical reliance on automating manuscript selections is highly inaccurate.

an over-reliance on citation as the only metric for measuring impact,

Not entirely sure what he’s referring to here. It’s true that we consider the paper citation count an important factor in determining the impact of a paper. And? I can imagine the number of views, downloads, ratings, comments, blog posts and such to be significant as well in determining the impact of a paper. Actually, we have factored in comments and ratings as something that can influence the impact of a manuscript. I’m sure we can consider the others as well later.

and a wide set of means that one could readily use to game the system.

Well, we’ve spent a lot of the paper addressing such issues. Did we identify all exploits? I doubt it. Did we create perfect measures to close the potential exploits? I doubt that. I’d like to think that at the design phase, which is where we are, we can (openly) discuss such issues. I, for one, am very interested in hearing about these ‘means that one could readily use to game the system’.

The proposal doesn’t seem to solve any of the noted problems with traditional peer-review

Solved is a big word. I think our message has been to try and “improve on the current situation”. Few to no incentives, for one. Accountability the other. Insight on the peer review quality (relatively). A higher utility of a single peer review by making it accessible to the relevant parties, such as other journals and peer reviewers of the same manuscript etc.

as it seems just as open to as much bias and subjectivity as what we have now.

Well, we do provide tools that allow scholars to at least track and (publicly) call out such offenses, in very extreme cases. In other cases they will simply not have their work “count” towards their “Reviewer Impact”, which is publicly visible. How is that as open as what we have now?

It’s filled with potential waste and delays as reviewers can apparently endlessly stall the process

What? No. Page 8 and 9:

Each peer review assignment is constrained by predetermined time limits. The default time limit for an entire process is one month after two peer reviewers have accepted the peer review assignment. Peer reviewers can agree to change the default time limit during the acceptance phase. Any reviewer who has not “signed off” by then will have Reviewer Credits extracted until the reviewers of the reports sign off or when the application for a peer review is terminated. This measure is to prevent a process going on for a far longer time than agreed to beforehand, which is not desirable for any party. An example of how the termination can work: a termination can happen when no new deadline, agreed by the authors and peer reviewers in question, has been set two weeks after it has passed the original deadline. In the case of termination one or more peer reviewers will have to be assigned to the peer review session to achieve the minimum of two peer reviews per manuscript.

Not exactly what I’d call the ability to stall endlessly.

and authors can repeatedly demand new reviews if they’re unhappy with the ones they’ve received.

Like how they can do now? Actually, we have something a little different in mind. See page 9:

When authors are not content after having gone through a peer review process, they can leave manuscripts “open” for others peer reviewers to start a new peer review session. The newer peer reviewers will have access to peer review reports of previous sessions, creating an additional layer of accountability. Concerning the consequences of multiple peer review sessions for the same manuscripts; in the traditional system the latest peer reviews before a manuscript is accepted for publication are the ones that count. In our peer-to-peer review model, the manuscript score is based on what the peer reviewers of the newest session have assigned to them. This is regardless of whether the scores are higher or lower than the previous manuscript scores. A possible alternative to this is to let the authors decide which results to attach to the manuscript rating. A disadvantage of authors selecting which set of grades to use is that it could likely weaken the importance of the earlier peer review sessions. To improve accountability and efficiency, previous reviews are not hidden from any future peer reviewers. The reviews will still count and the peer reviewers who have submitted them maintain the Reviewer Credits awarded to them. Regardless of how and which sets of grades are utilized, those specific grades are to be reflected in the rankings and returned search results.

So, yes, authors can demand new reviews if they’re unhappy with the ones they’ve received. And scholars can see how many times they’ve done this already based on the grades (and sometimes more, depending on the grades) of the existing peer reviews of those manuscripts and decide for themselves whether it’s worth their time to peer review them again. Again, you can question the effectiveness of this added level of accountability, but you cannot say authors can “abuse” the concept of requesting peer reviews as many times as they want. They can’t, and certainly not compared to what they already can and generally do with the current publishing system. Also, the section Crediting Reviewer Impact (which starts at page 11) covers additional “penalties” of authors repeatedly accepting new peer reviews.

Reviewers are asked to do a tremendous amount of additional work beyond their current responsibilities, including reviewing the reviews of other reviewers, and taking on jobs normally done by editors. If one of the problems of the current system is the difficulty in finding reviewers with time to do a thorough job, then massively increasing that workload is not a solution.

A legitimate concern. But here’s the thing, we’re not sure this is going to be true. Sure, we ask peer reviewers to additionally evaluate and score the peer reviews of the others. We’ll classify that as a chore. Not entirely substantiated, because we’ve more than once heard the sentiment shared that scholars actually enjoy having access to the other peer reviews of the manuscripts that they themselves have peer reviewed just out of curiosity, or to learn something from it. And are they not evaluating the other peer reviews by doing that? We’re just proposing to provide scholars who want to do that with the tools to do so effectively. But fine, we’ll consider that a chore.

But what if we achieve our intended objectives? What if by doing this the average quality of a peer review(er) goes up? What if the average number of peer reviews for manuscripts go down (because of the instruments that can hold peer reviewers and authors alike more accountable for untimely/low quality work)? And if you have to peer review a manuscript that has been peer reviewed before (but hasn’t been revised), what if you can save time by having access to previous peer reviews? And what if your own manuscripts receive greater odds of being noticed, read, reviewed and cited more often by peer reviewing well (more on this later, or you can just read it in the working paper)? A more efficient allocation (with a global platform) of the available peer reviewers, peer reviews, authors and manuscripts? Have a more objective understanding of (the impact of) your peer review proficiency (relatively to other scholars)? Open Access to scrutinized research literature? Would it still just be a tremendous waste of your time? Or may the benefits actually be worth it? Focusing on just the “chores” without pondering over the potential benefits, both perspectives which we’ve written extensively about, is not a very accurate way of evaluating proposals IMO.

There’s a reason that editors are paid to do their jobs — it’s because scientists don’t want to spend their time doing those things. Scientists are more interested in doing actual research.

And they can do that better when they don’t have to keep on peer reviewing (unrevised) manuscripts that have already been peer reviewed. And when they can have more access to scrutinized research literature.

Like the PubCred proposal, it fails to address the uneven availability of expertise, and assumes all reviewers are equally qualified.

Actually, the whole point of creating a metric for peer review proficiency is to more objectively measure the differences in peer review proficiency among scholars. And by providing them with the instruments to do so systematically, I’d like to think that we can get that kind of information. As for the former issue, I’m not entirely sure what he means. Scholars aren’t being punished for not peer reviewing. They can still submit their papers, and if they’re interesting enough then surely some scholars will want to peer review them, which they can with no penalties.

Also like PubCred, the authors’ suggestions for paying for the system seem unrealistic. In this case, they’re suggesting a subscription model, which seems to argue against the very open access nature of the repositories themselves, limiting functionality and access to tools for those unwilling to pay.

The nature of Open Access preprint repositories is to provide access to preprints. That doesn’t change at all. Everybody can still submit and access preprints in OA preprint repositories. What they might want to be paying for is more advanced search instruments for peer-to-peer reviewed manuscripts (“postprints”). What we propose here is something that can no longer be classified as an “open access repository”. It’s a peer-to-peer review model with an own database for peer reviews and possibly an own database for revised papers, if the repositories “providing” manuscripts can’t accommodate for that, providing open access to scrutinized preprints (“postprints”). Paying for the scrutiny of manuscripts doesn’t go against the nature of scholarly communication, surely.

The authors spend several pages going into fetishistic detail about every aspect of the measurement, but just as in the proposed Scientific Reputation Ranking program suggested in The Scientist, they fail to answer key questions:

Who cares? To whom will these metrics matter? What is being measured and why should that have an impact on the things that really matter to a career in science? Why would a funding agency or a hiring committee accept these metrics as meaningful?


If you’re hoping to provide a powerful incentive toward participation, you must offer some real world benefit, something meaningful toward career advancement.

And with this, my failure to come up with a good title of this blog post is exposed: it’s not just about peer review. As the title of our working paper already suggests: it’s also about scholarly communication. Who cares? Scholars who want to read scrutinized research literature might care. Authors who want to see their papers scrutinized might care. People who care about Open Access might care. Scholars who want to peer review properly might care. Scholars who peer review properly and want to be rewarded with higher odds of having their own works noticed, read, reviewed and cited might care. Scholars who care about a more efficient allocation of peer reviewers and their peer reviews might care. You can argue against the validity of these “incentives”, but you can’t just disregard them completely without considering them and telling people “there’s nothing for them to gain”. I find that to be a very incomplete approach of evaluating proposals.

Look, there are plenty of legitimate concerns with our proposed model. We spent quite a bit of time addressing how those concerns can be tackled. We could use advice on how to improve our proposed solutions or even criticism of why they don’t work. What we don’t need are people completely ignoring our proposed solutions when they review our proposal. It doesn’t help us, and I don’t see how it can help you. And that’s all I have to say for now. Back to working on part 2.

A Proposal To Improve Peer Review: A Unified Peer-to-Peer Review Platform (part 1)

September 25, 2010 3 comments

Whoa, has it really been a year since my last update? Geez!

“Slacker! Where have you been!?”

I guess I’ve just been distracted. I have, however, not exactly been slacking off…much. As evidence of that I’m presenting our (me and my co-author) working paper that anyone can freely download over at SSRN. (Not giving up on my nick here though)

The title of our working paper is:
Towards Scholarly Communication 2.0: Peer-to-Peer Review & Ranking in Open Access Preprint Repositories.

“Wait, what? If that’s the title of your working paper, then why didn’t you name your blog post like that?”

This blog title is shorter, more befitting of a blog post and essentially conveys the same message: “Peer-to-Peer Review (& Ranking) + Open Access Preprint Repositories” equals our “Unified Peer-to-Peer Review Platform”. And now I’m going to summarize our working paper in such a way that it’ll fit nicely in a couple of blog posts. This way people who don’t feel like reading through 25 pages (right now) can still get the gist of the proposed model. I can’t guarantee that you won’t miss important details, though. In fact, I’m fairly certain you’re going to miss out on good stuff. Let’s start with…

The abstract:

In this paper we present our unified peer-to-peer review model for Open Access preprint repositories. Its objective is to improve the efficiency and effectivity of digital scholarly communication. The key elements of this model are standardized quality assessment instruments, public and private communication channels, special rankings and novel incentives. The model allows scholars to proficiently evaluate both the manuscripts and their peer reviews. These scrutinized manuscripts and peer reviews will then be made available to the relevant parties. These standardized quality assessments allow for new quality metrics for papers and peer reviews. The Reviewer Impact, which represents the peer review proficiency and peer review output of scholars, is one such metric. The model includes diverse rankings for scholars to appear in to receive better odds of having their own manuscripts noticed, read, peer reviewed and cited. Their specific ranking is proportional to their Reviewer Impact and the overall quality of their manuscripts. The Open Access preprint repository model is a suitable foundation for our model because of its high degree of accessibility, but little to no certification of its deposited manuscripts. With this combination we envision a novel, Open Access, peer-to-peer scholarly communication model that functions independently of, but not incompatibly with, the traditional journal publishing model: Scholarly Communication 2.0.

The abstract is easier to understand if you are somewhat familiar with the strengths and the (criticized) weaknesses of the peer review process, (Open Access) journal publishing and (Open Access) self-archiving. Even better if you are also familiar with the common pitfalls of (recent?) initiatives for improving scholarly communication/peer review. Examples of those pitfalls are the lack of (1) accountability, (2) creditability, (3) scalability, (4) a business/revenue model, (5) efficiency, (6) unique/competitive services and (7) incentives. If you aren’t familiar with any of this there’s nothing to worry about, as there’s always the introduction!

“…and the rest of the paper. And this blog. And e-mail, optionally? Alright, let’s do this!”

Scholarly Communication by Journal Publishers
…is the title of the introduction of our working paper. In it, we briefly describe scholarly communication; why journal publishing is still the most established scholarly communication model despite our technological (digital communication, “Web 2.0”) and cultural changes (Open Access/ the “preprint culture”), common criticism of both journal publishing and peer review and our proposal of implementing Open Access preprint repositories with a peer-to-peer review certification function. The rest of the paper is spent on exploring the significance and feasibility of our proposed model. More specifically, we provide our answers to the questions “What is the added value of the model given what we already have in scholarly communication?” and “Is the model technically, functionally and financially possible?”. Let’s start with exploring the significance first.

A case for a Unified Peer Review Platform (for Open Access Preprint Repositories)
…is the title of the next section of our working paper. In this section we present the opportunities of journals and scholars collaborating on peer reviewing manuscripts on a single, digital platform. One such opportunity is a more efficient reuse of peer reviews by making them accessible to other journals and peer reviewers. Another is the insight in the quality and output of peer reviewers, which allows for a more effective allocation of scholars for peer reviewing. Then there’s the ability to introduce, encourage and provide peer reviewers with sound peer review practices and peer review instruments so they can peer review more proficiently. These services together enable more objective assessments and metrics that put the quality and overall output of peer reviewers in perspective. These metrics allow more proportional rewards while preserving the anonymity of peer reviewers. In short, we argue that a global peer review platform has the potential to improve the accountability, manageability, effectiveness and efficiency of the certification function of scholarly communication.

“Sounds nice.”

There’s a big bottleneck, however..

“Which is?”

By and large, journal publishers will not collaborate on this. There are simply little to no incentives for them to do so: sharing peer reviews that their journal editors initiated and managed weakens their respective journals’ competitive position. As a journal’s competitive position is greatly based on their ability to identify good or potentially good papers through peer review. Another disincentive for journals is that a place for scholars to submit their manuscripts and carry out peer reviews which other journals can peek at (eventually) levels the playing field quite a bit. And one significant advantage that high profile/impact journals have is receiving first dibs on (potentially) significant manuscripts for publication. So there are even fewer reasons for these journals to voluntarily cooperate with leveling their playing field. And without the participation of high profile/impact journals, a unified peer review platform is suddenly a whole lot less attractive for scholars, who generally want to see their papers published in high profile/impact journals.

So the case is not that we don’t want to accommodate journals when it comes to improving peer review in the aforementioned ways. The reality is that it’s simply not realistic to expect journals, especially the high profile/impact journals, to agree on collaborating on a unified peer review platform. Of course, if other (well respected) journals want to cooperate, that would still turn it into a beneficial service to provide, but we’d like to think that the issue of weakening a journal’s competitive position is relatively the same for all journals except those with the lowest impact factors.

In addition, what we’re trying to achieve with a unified peer review platform is not just that sound peer reviews can be more efficiently utilized by the relevant parties. As valuable as that would be, we additionally want to increase the insight and management of the peer review process. We want to have a more objective way of evaluating a scholar’s peer review proficiency and output. And for that to happen an additional requirement is that every single peer review must be scrutinized in roughly the same way. Only then can we say that we can more accurately compare the peer review proficiency (and output) of scholars.

There is additionally the matter of journals having different quality standards and methodologies to reach those standards.
Getting all the different journals to agree to apply the same standards and criteria is likely going to be difficult, if not impossible. It is, however, a necessary requirement to ensure peer review consistency and enable objective assessments and comparisons.

“Now you’re just being greedy. If you can manage to have journals and scholars agree to share their peer reviews, isn’t that already a valuable enough outcome? Sounds like a worthy goal to strive for.”

But there’s nothing original about the idea of a unified peer review platform where scholars and journals can share their peer reviews to improve the overall peer review process of manuscripts. The fact that something like that doesn’t exist between journals not from the same publisher/brand (as far as we know?) means there is at least one fundamental issue that’s preventing scholars and/or journals from doing this already. And given the highly competitive industry that is journal publishing, we’re assuming that the aforementioned disincentives of journals to collaborate on such peer review platforms are more right than wrong.

“Oh well, that’s too bad. Nice try, though. Back to hibernation for a year?”

But the potential of a unified peer review platform to improve peer review is, in our opinion, too great to simply leave it at that. We also have more options when it comes to digital collaboration.

From a different perspective, Open Access preprint repositories have the potential to meet the mandatory requirements. They have openly accessible manuscripts, which are eligible for peer review. They are established platforms for scholars to visit and make use of. They have little competitive desire and instead are more open to utilizing open standards and newer communication and collaboration technologies to make research as accessible as possible. They already fulfil three of the four main functions of scholarly communication. The only function repositories are traditionally missing is the certification function. A lack of a certification function results in a lack of the journal editor role, a key role in traditional peer review process. For that reason, Open Access preprint repositories are not eligible for a global peer review system with the way peer reviews are traditionally carried out. However, they are eligible for a global peer review system utilizing a peer-to-peer review system instead.

Services provided: Repositories versus Journals
So that’s how we shifted from “journal peer review” to “peer-to-peer review (in Open Access preprint repositories)”. Significant challenges are still unaddressed here, but that’s what the rest of the paper and the next blog post are for. One last thing I want to point out before finishing up the first part of this blog series and this section of our working paper is this:

However, that does not mean it should be incompatible with the current journals models. There is no practical advantage in denying the traditional enablers of (journal) peer reviews from participating. Particularly when considering their established value to scholarly communication, compatibility increases the utility of the peer-to-peer review model.

We see efficiency an important element of our proposal. Allowing for maximum compatibility with already established scholarly communication models means that the time and effort that scholars contribute to this environment won’t be wasted, regardless of whether a peer-to-peer review model (like ours) can function independently or not.

Concluding part 1
So there you have it. That’s the context of our proposed model. The next section of our working paper is titled: A General Overview of the Model: Simulating the Journal Editor. In this section, we briefly describe the functional environment that is to support our peer-to-peer review process. After that we can finally dig into the meaty stuff: detailing how the actual peer-to-peer review process is carried out, how such activities can be properly credited, how to encourage professional behavior, how to enable accountability, provide “career improving” incentives and how all of this leads to new metrics for authors, papers, peer reviewers, peer reviews and ultimately a more effective and efficient way of scholarly communication. In the Discussion & Conclusion section, we’ll go over all the “opportunities” and “threats” (to use it in SWOT terms) and talk a bit about how this model can gain revenue. Feedback would be most welcome!

Feasibility of PLoS ONE’s Peer Review Model?

August 31, 2008 14 comments

There is a growing urge to deal with the significant issues that plague both the peer review and the scientific paper format. The peer review issues concern the inefficiency and ineffectiveness of validating the quality of a scientific paper. The scientific paper issues concern the inflexibility of communicating more scientific knowledge, e.g. not limited by some journal paper page limit, complementary (raw) data sets or even corrections to the paper. Thanks to the advent of digital communication, these issues are now more apparent than ever. However, that does not mean that the solutions that are conceptualized or even practically realized are the be-all end-all solutions to our problems.

In this blog post, I express my concerns with PLoS ONE’s peer review and publication model as the model that can stand on its own as a/the new peer review model. I suggest some features that are based on existing concepts to complement their peer review system to make the transition to their vision of how (their) peer review should work perhaps more feasible.
Read more…

Pages: 1 2 3 4

The Future of IT and Science (2): Accreditation and Validation Issues

August 25, 2008 1 comment

The impact of Information Technology (IT), and in particular the Internet, on scholarly communication has been revolutionary. Digital communication allowed for digital collaboration, digital research papers and digital scholarly journals. However, the rate at which the Internet is utilized for academic purposes is seemingly much lower than for nonacademic (e.g. commercial and “social”) purposes. Attempts to get that same kind of degree of digital communication & collaboration going on between scholars are often hampered by the same pair of bottlenecks: a lack of (personal) incentives and a lack of time for scholars to exploit the benefits of IT.

As a response, this blog post provides some thoughts on new tools and practical incentives to encourage scholars to be a bigger part of this digital revolution in science…is what I would like to say. Sadly, while conceptualizing those ideas, I ran into some more issues that I need to share first. They are rather important issues pertaining to the actual development of new tools and incentives for scholarly communication: certification and efficiency.

“Great, another blog post dedicated to negativity.”
Read more…

Pages: 1 2 3